Hopp til hovedinnhold
Omslagsbilde

Mixture Models : Parametric, Semiparametric, and New Directions

Xiang, Sijia Yao, Weixin

Forventes utgitt

Handlinger

Beskrivelse

Omtale

Mixture models are a powerful tool for analyzing complex and heterogeneous datasets across many scientific fields, from finance to genomics. Mixture Models: Parametric, Semiparametric, and New Directions provides an up-to-date introduction to these models, their recent developments, and their implementation using R. It fills a gap in the literature by covering not only the basics of finite mixture models, but also recent developments such as semiparametric extensions, robust modeling, label switching, and high-dimensional modeling. Features Comprehensive overview of the methods and applications of mixture modelsKey topics include hypothesis testing, model selection, estimation methods, and Bayesian approachesRecent developments, such as semiparametric extensions, robust modeling, label switching, and high-dimensional modelingExamples and case studies from such fields as astronomy, biology, genomics, economics, finance, medicine, engineering, and sociologyIntegrated R code for many of the models, with code and data available in the R Package MixSemiRobMixture Models: Parametric, Semiparametric, and New Directions is a valuable resource for researchers and postgraduate students from statistics, biostatistics, and other fields. It could be used as a textbook for a course on model-based clustering methods, and as a supplementary text for courses on data mining, semiparametric modeling, and high-dimensional data analysis.

  • Utgivelsesdato:

    18.04.2024

  • ISBN/Varenr:

    9780367481827

  • Språk:

    Engelsk

  • Forlag:

    Chapman & Hall/CRC

  • Innbinding:

    Innbundet

  • Fagtema:

    Matematikk og naturvitenskap

  • Serie:

    Chapman & Hall/CRC Monographs on Statistics and Applied Probability

  • Litteraturtype:

    Faglitteratur

  • Sider:

    379

  • Høyde:

    23.4 cm

  • Bredde:

    15.6 cm

Count Time Series : A Generalized Linear Models Approach

Count Time Series : A Generalized Linear Models Approach

Fokianos, Konstantinos
9781482248050 Innbundet
25.02.2027
Engelsk

Forventes utgitt
Likelihood and its Extensions

Likelihood and its Extensions

Varin, Cristiano • Reid, Nancy • Yi, Grace Y.
9781498719742 Innbundet
12.03.2026
Engelsk

Forventes utgitt
Hierarchical Modeling and Analysis for Spatial Data

Hierarchical Modeling and Analysis for Spatial Data

Gelfand, Alan E. • Banerjee, Sudipto • Carlin, Bradley P.
9781032508559 Innbundet
23.09.2025
Engelsk

Forventes utgitt
Robust Small Area Estimation : Methods, Theory, Applications, and Open Problems

Robust Small Area Estimation : Methods, Theory, Applications, and Open Problems

Sunil Rao, J. • Jiang, Jiming
9781032488851 Innbundet
20.08.2025
Engelsk

Forventes utgitt
Theory of Nonregular Factorial Designs

Theory of Nonregular Factorial Designs

Tang, Boxin • Cheng, Ching-Shui
9781032443799 Innbundet
30.04.2025
Engelsk

I salg
Seminal Ideas and Controversies in Statistics

Seminal Ideas and Controversies in Statistics

Little, Roderick J. A.
9781032497174 Innbundet
02.03.2025
Engelsk

I salg
Functional Data Analysis with R

Functional Data Analysis with R

Leroux, Andrew • Goldsmith, Jeff • Cui, Erjia • Crainiceanu, Ciprian M.
9781032244716 Innbundet
11.03.2024
Engelsk

Forventes utgitt
Bayesian Nonparametrics for Causal Inference and Missing Data

Bayesian Nonparametrics for Causal Inference and Missing Data

Linero, Antonio • Daniels, Michael J. • Roy, Jason
9780367341008 Innbundet
23.08.2023
Engelsk

Forventes utgitt
Sparse Graphical Modeling for High Dimensional Data : A Paradigm of Conditional Independence Tests

Sparse Graphical Modeling for High Dimensional Data : A Paradigm of Conditional Independence Tests

Jia, Bochao • Liang, Faming
9780367183738 Innbundet
02.08.2023
Engelsk

Forventes utgitt