Hopp til hovedinnhold
Omslagsbilde

Mathematical Engineering of Deep Learning

Liquet, Benoit Nazarathy, Yoni Moka, Sarat

Produseres på bestilling

Leveringstid: 3-10 dager

Handlinger

Beskrivelse

Omtale

Mathematical Engineering of Deep Learning provides a complete and concise overview of deep learning using the language of mathematics. The book provides a self-contained background on machine learning and optimization algorithms and progresses through the key ideas of deep learning. These ideas and architectures include deep neural networks, convolutional models, recurrent models, long/short-term memory, the attention mechanism, transformers, variational auto-encoders, diffusion models, generative adversarial networks, reinforcement learning, and graph neural networks. Concepts are presented using simple mathematical equations together with a concise description of relevant tricks of the trade. The content is the foundation for state-of-the-art artificial intelligence applications, involving images, sound, large language models, and other domains. The focus is on the basic mathematical description of algorithms and methods and does not require computer programming. The presentation is also agnostic to neuroscientific relationships, historical perspectives, and theoretical research. The benefit of such a concise approach is that a mathematically equipped reader can quickly grasp the essence of deep learning.Key Features:A perfect summary of deep learning not tied to any computer language, or computational framework.An ideal handbook of deep learning for readers that feel comfortable with mathematical notation.An up-to-date description of the most influential deep learning ideas that have made an impact on vision, sound, natural language understanding, and scientific domains.The exposition is not tied to the historical development of the field or to neuroscience, allowing the reader to quickly grasp the essentials.Deep learning is easily described through the language of mathematics at a level accessible to many professionals. Readers from fields such as engineering, statistics, physics, pure mathematics, econometrics, operations research, quantitative management, quantitative biology, applied machine learning, or applied deep learning will quickly gain insights into the key mathematical engineering components of the field.

  • Utgivelsesdato:

    03.10.2024

  • ISBN/Varenr:

    9781032288291

  • Språk:

    Engelsk

  • Forlag:

    Chapman & Hall/CRC

  • Innbinding:

    Innbundet

  • Fagtema:

    Matematikk og naturvitenskap

  • Serie:

    Chapman & Hall/CRC Data Science Series

  • Litteraturtype:

    Faglitteratur

  • Sider:

    402

  • Høyde:

    25.4 cm

  • Bredde:

    17.8 cm

Predictive Modelling for Football Analytics

Predictive Modelling for Football Analytics

Karlis, Dimitris • Egidi, Leonardo • Ntzoufras, Ioannis
9781032030647 Innbundet
05.11.2025
Engelsk

Forventes utgitt
Models Demystified : A Practical Guide from Linear Regression to Deep Learning

Models Demystified : A Practical Guide from Linear Regression to Deep Learning

Clark, Michael • Berry, Seth
9781032582580 Innbundet
04.08.2025
Engelsk

Forventes utgitt
Introduction to Classifier Performance Analysis with R

Introduction to Classifier Performance Analysis with R

Saw, Sutaip L.C.
9781032855622 Innbundet
03.12.2024
Engelsk

Produseres på bestilling
Getting (more out of) Graphics : Practice and Principles of Data Visualisation

Getting (more out of) Graphics : Practice and Principles of Data Visualisation

Unwin, Antony
9780367674007 Innbundet
13.09.2024
Engelsk

Produseres på bestilling
Why Data Science Projects Fail : The Harsh Realities of Implementing AI and Analytics, without the Hype

Why Data Science Projects Fail : The Harsh Realities of Implementing AI and Analytics, without the Hype

Gray, Douglas • Shellshear, Evan
9781032661339 Innbundet
05.09.2024
Engelsk

Produseres på bestilling
Data Science : A First Introduction with Python

Data Science : A First Introduction with Python

Ostblom, Joel • Campbell, Trevor • Timbers, Tiffany • Lee, Melissa • Heagy, Lindsey
9781032572192 Innbundet
23.08.2024
Engelsk

Produseres på bestilling
Introduction to Data Science : Data Wrangling and Visualization with R

Introduction to Data Science : Data Wrangling and Visualization with R

Irizarry, Rafael A.
9781032116556 Innbundet
02.08.2024
Engelsk

Produseres på bestilling
DevOps for Data Science

DevOps for Data Science

Gold, Alex
9781032100340 Innbundet
19.06.2024
Engelsk

Produseres på bestilling
The Data Preparation Journey : Finding Your Way with R

The Data Preparation Journey : Finding Your Way with R

Monkman, Martin Hugh
9781032192314 Innbundet
07.05.2024
Engelsk

Produseres på bestilling
Mathematical Engineering of Deep Learning

Mathematical Engineering of Deep Learning

Liquet, Benoit • Nazarathy, Yoni • Moka, Sarat
9781032288284 Heftet
03.10.2024
Engelsk

Produseres på bestilling