Hopp til hovedinnhold

Oppdatert 30.1. Klikk her for info om bokleveranser, faktura og nettbutikk

Omslagsbilde

Generalized Notions of Continued Fractions : Ergodicity and Number Theoretic Applications

Lopez-Salazar Codes, Jeronimo Trutschnig, Wolfgang Fernandez Sanchez, Juan Seoane Sepulveda, Juan B.

Chapman & Hall/CRC Monographs and Research Notes in Mathematics

|

Innbundet

I salg

Leveringstid: 7-30 dager

Handlinger

Beskrivelse

Omtale

Ancient times witnessed the origins of the theory of continued fractions. Throughout time, mathematical geniuses such as Euclid, Aryabhata, Fibonacci, Bombelli, Wallis, Huygens, or Euler have made significant contributions to the development of this famous theory, and it continues to evolve today, especially as a means of linking different areas of mathematics. This book, whose primary audience is graduate students and senior researchers, is motivated by the fascinating interrelations between ergodic theory and number theory (as established since the 1950s). It examines several generalizations and extensions of classical continued fractions, including generalized Lehner, simple, and Hirzebruch-Jung continued fractions. After deriving invariant ergodic measures for each of the underlying transformations on [0,1] it is shown that any of the famous formulas, going back to Khintchine and Levy, carry over to more general settings. Complementing these results, the entropy of the transformations is calculated and the natural extensions of the dynamical systems to [0,1]2 are analyzed. Features Suitable for graduate students and senior researchersWritten by international senior experts in number theoryContains the basic background, including some elementary results, that the reader may need to know before hand, making it a self-contained volume

Detaljer