Hopp til hovedinnhold

Oppdatert 30.1. Klikk her for info om bokleveranser, faktura og nettbutikk

Omslagsbilde

Multi-Label Dimensionality Reduction

Ye, Jieping Ji, Shuiwang Sun, Liang

Chapman & Hall/CRC Machine Learning & Pattern Recognition

|

Innbundet

I salg

Leveringstid: 7-30 dager

Handlinger

Beskrivelse

Omtale

Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data mining and machine learning literature currently lacks a unified treatment of multi-label dimensionality reduction that incorporates both algorithmic developments and applications. Addressing this shortfall, Multi-Label Dimensionality Reduction covers the methodological developments, theoretical properties, computational aspects, and applications of many multi-label dimensionality reduction algorithms. It explores numerous research questions, including: How to fully exploit label correlations for effective dimensionality reductionHow to scale dimensionality reduction algorithms to large-scale problemsHow to effectively combine dimensionality reduction with classificationHow to derive sparse dimensionality reduction algorithms to enhance model interpretabilityHow to perform multi-label dimensionality reduction effectively in practical applicationsThe authors emphasize their extensive work on dimensionality reduction for multi-label learning. Using a case study of Drosophila gene expression pattern image annotation, they demonstrate how to apply multi-label dimensionality reduction algorithms to solve real-world problems. A supplementary website provides a MATLAB package for implementing popular dimensionality reduction algorithms.

Detaljer