
Computation, Optimization, and Machine Learning in Seismology
AGU Advanced Textbooks
|
Heftet
Forventes utgitt: 05.10.2025
Leveringstid: 3-10 dager
Handlinger
Beskrivelse
Omtale
Computation, Optimization, and Machine Learning in Seismology The goal of computational seismology is to digitally simulate seismic waves, create subsurface models, and match these models with observations to identify subsurface rock properties. With recent advances in computing technology, including machine learning, it is now possible to automate matching procedures and use waveform inversion or optimization to create large-scale models. Computation, Optimization, and Machine Learning in Seismology provides students with a detailed understanding of seismic wave theory, optimization theory, and how to use machine learning to interpret seismic data. Volume highlights include: Mathematical foundations and key equations for computational seismologyEssential theories, including wave propagation and elastic wave theoryProcessing, mapping, and interpretation of prestack dataModel-based optimization and artificial intelligence methodsApplications for earthquakes, exploration seismology, depth imaging, and multi-objective geophysics problemsExercises applying the main concepts of each chapter
Detaljer
-
ISBN/Varenr:
9781119654469
-
Språk:
, Engelsk
-
Forlag:
American Geophysical Union
-
Fagtema:
Geofag, geografi og miljøkunnskap
-
Litteraturtype:
-
Sider:
416